tm2006,减肥的时候是先减皮下脂肪还是内脏上的脂肪呢

2023-02-22 124阅读 0评论

tm2006,减肥的时候是先减皮下脂肪还是内脏上的脂肪呢?

一、人体脂肪的消耗有明确的位置优先级:优先消耗内脏脂肪与许多自媒体说的不太一样,人体的脂肪消耗并不是全身均匀的。虽然有少数研究得出减肥时消耗的内脏脂肪比皮下脂肪少[1][2],但大多数研究指出『减肥过程中内脏脂肪比皮下脂肪消耗更多』。

Kelley等人2004年在权威期刊《Diabetes Care》上发表了一篇论文,针对39名肥胖的2型糖尿病患者(平均体重100kg,平均BMI35)进行减肥实验(节食+药物),26周受试者们减去的内脏脂肪(26%)明显高于皮下脂肪(15%)[3]。

tm2006,减肥的时候是先减皮下脂肪还是内脏上的脂肪呢

原文截图

查了下《Diabetes Care》的因子高达18.1,1区的,比较可信。

查询页面

Ross等人2004年招募了54名肥胖妇女(平均腰围110CM,平均BMI32),其中15人采用节食减肥,17人运动减肥[4]。结果节食减肥组减去的内脏脂肪(20.8%)比腹部皮下脂肪(8.9%)更多;运动组减的内脏脂肪(30%)也比皮下脂肪多(16.9%)。

Subcuttaneous fat是皮下脂肪,visceral fat是内脏脂肪

除了这两个,还有大量关于节食的研究,都支持上述结论:

Weinser等人2001年:23名肥胖女性,26周减去内脏脂肪40.7%、皮下脂肪%33.1[5];Gower等人2002年:19名肥胖女性,26周减去内脏脂肪38.5%、皮下脂肪30.3%[6];Pascuali等人2000年:10名肥胖女性,4周减去内脏脂肪8.3%、皮下脂肪6.5%[7];Alvarez等人2005年:6名肥胖男性,13周减去内脏脂肪23.9%、皮下脂肪%17.7[8];Rice等人1999年:9名肥胖男性,16周减去内脏脂肪35%、皮下脂肪25%[9];Weits等人1989年:20名肥胖女性,12周减去内脏脂肪15.1%、皮下脂肪10.6%[10];Okura等人2002年:14名肥胖女性,14周减去内脏脂肪40%、皮下脂肪28%[11];Fujioka等人1991年:26名肥胖女性,8周减去内脏脂肪33.3%、皮下脂肪22.6%[12];Janssen等人1999年:13名肥胖女性,16周减去内脏脂肪28.6%、皮下脂肪18.8%[13];Tchernof等人2002年:25名肥胖女性,14周减去内脏脂肪36.4%、皮下脂肪23.7%[14];Thong等人2000年:14名肥胖男性,12周减去内脏脂肪25.2%、皮下脂肪15.7%[15];Tiikainen等人2003年:11名肥胖女性,17周减去内脏脂肪23%、皮下脂肪13%[16];Tiikainen等人同年的另一项研究中12名肥胖女性,17周减去内脏脂肪29%、皮下脂肪14%[16];ROSE等人2000年:14名肥胖男性,13周减去内脏脂肪28.1%、皮下脂肪15.6%[17];Gambinery等人2003年:7名肥胖女性,26周减去内脏脂肪18.8%、皮下脂肪8.4%[18];采用节食加运动的研究,结论也类似:

Park等人2004年:47名肥胖者,12周减去内脏脂肪23.8%、皮下脂肪19.9%[19];Nakamura等人2000年:60名肥胖女性,13周减去内脏脂肪12.5%、皮下脂肪8.9%[20];Park等人2005年:36名肥胖女性,12周减去内脏脂肪22.5%、皮下脂肪14.8%[21];Okura等人2005年:71名肥胖女性,14周减去内脏脂肪39%、皮下脂肪24%[22];Pare等人2001年:45名肥胖男性,52周减去内脏脂肪19.9%、皮下脂肪10.1%[23];采用节食加减肥药物的研究,依然支持上述结论:

Kelley等人2004年(奥利司他):19名肥胖者,26周减去内脏脂肪28%、皮下脂肪16%[24];Tiikk等人2004年(奥利司他):24名肥胖女性,21周减去内脏脂肪27%、皮下脂肪14%[25];Kim等人2004年(盐酸西布曲明):28名肥胖女性,12周减去内脏脂肪19.9%、皮下脂肪16.5%[26];Kamel等人2000年:17名肥胖男性(盐酸西布曲明),26周减去内脏脂肪37.5%、皮下脂肪24%[27];19名肥胖女性,26周减去内脏脂肪43.3%、皮下脂肪20.1[27];Yip等人2001年:20名肥胖女性(盐酸西布曲明),24周减去内脏脂肪%35.5、皮下脂肪%26.2[28];总之,不管是节食、运动、药物等一切减肥方式(还有胃部手术的没放上来),『减肥过程中内脏脂肪一般比皮下脂肪消耗更多』,所以人体消耗脂肪,是有部位的优先级的。

二、同样是人身上的肥肉,『脂肪』和『脂肪』是不同的按颜色,人体脂肪可以分白色脂肪和棕色脂肪[29][30],以及可以演化成棕色脂肪的米色脂肪[31];按部位,脂肪有皮下、内脏、骨骼肌内脂、心肌脂等。

脂肪组织不仅是脂肪滴的容器,也是调节内分泌的器官。脂肪细胞中富含神经、血管和各种结缔组织[32],能分泌多种细胞因子,调节食欲、能量代谢、免疫功能和生殖[33];

皮下脂肪和内脏脂肪都是白色脂肪组织,但它们具有不同的作用(如内分泌)。皮下脂肪分泌瘦素,对健康可能更有益或者至少无害[34],而内脏脂肪分泌各种促炎物质,如白介素IL-6、C-反应蛋白CRP[33]等,它们与代谢综合征有关[35][36][37][38][39][40]。

说个题外话,皮下脂肪和内脏脂肪的代谢特性差异,也造成了绝经前女性的代谢疾病率明显低于男性[41][42][43][44][45][46][47];并且即便男性和女性的身体脂肪总量相等这种疾病率差异依然存在[48][49]。这主要因为雌激素把脂肪从『内脏』向『腿皮下』“转移”[50][51][52][53][54][55],如果全身脂肪总量相同,男性的内脏脂肪量可能是女性的2倍[56]。

雌激素与脂肪分布

内脏和皮下脂肪脂肪的代谢特性也有不同。Virtanen等人通过同位素标记的葡萄糖,证明了内脏脂肪对葡萄糖的摄取明显高于皮下脂肪[57];Andersson等人让受试者口服了带有同位素标记的甘油三酯,发现内脏脂肪(腹腔网膜)对甘油三酯的摄取显著高于皮下脂肪50%以上[58]。

三、相对而言,内脏脂肪更容易被释放、被身体利用这不是什么新鲜观点,早就是主流结论了。最典型的是Robert等人2007年发表在权威期刊《Diabetes》上的研究,用碳14同位素标记方法追踪来自内脏和非内脏脂肪酸[59]。

封面

这篇论文包含了AB两个研究。

A研究中,内脏脂肪酸释放为60±7%,非内脏脂肪酸释放24±6%;B研究中内脏脂肪酸释放为54±3%,非内脏脂肪酸释放16±5%。这些数据很好的说明了内脏脂肪具有更强的代谢活跃性,更容易被摄取和利用。

内脏脂肪酸释放(白)VS非内脏脂肪酸释放(黑)

1991年,Jensen等人也用上述方法观察研究了20名女性(8人上身肥胖/6人下身体肥胖/6人不肥胖)餐后脂肪酸的总释放情况[60]:

上身肥胖者的脂肪酸释放为161±16微摩/分钟;下身肥胖者的脂肪酸释放为为为111+/-9微摩/分钟;非肥胖者的脂肪酸释放为为92+/-9微摩/分钟。同位素标记追踪的结果证明了腿部脂肪释放的脂肪酸明显少于内脏脂肪。Guo等人也用类似方法,研究了8名上身肥胖和下身肥胖的女性餐后脂肪酸的代谢,发现了内脏脂肪和下半身堆积的脂肪,在餐后脂肪酸流量方面有显著差异[61]。

上身肥胖组的女性内脏脂肪酸释放流为275±45微摩尔/分钟;下半身肥胖组的女性内脏脂肪酸释放流为88±24微摩尔/分钟。这些数据证明了内脏脂肪的代谢流动性明显高于皮下脂肪,优先被释放,优先被消耗。

类似的研究不少[62][63][64][65],结论从性质上相似,就不挨个细说了。总之,内脏脂肪酸的代谢活跃性相对于其他部位更强、更容易被释放出来利用。

这也解释了为什么,很多女生发现减肥初期肚子减得最明显,胸和屁股减得少一些,减肥之后形体得到了美化,腰臀比降低了。

四、内脏脂肪对脂解激素的敏感性更高脂解激素,指的是人体处于禁食、运动或能量不足的状态时器官分泌一些激素。

这些激素从器官(肾脏、胰腺等)被释放,随血液运输到脂肪细胞,与其表面的受体结合,然后引发一系列反应,让脂肪细胞中的脂肪酸被释放出来,供各器官和大脑使用。

典型的脂解激素有胰高血糖素[66]、肾上腺素[67]和去甲肾上腺素[68]等;其中,肾上腺素被认为是最主要的一种。

脂解激素

内脏脂肪对脂解激素更敏感,跟受体有很大关系。

Jeong等人研究了女性皮下(大腿/腹部)和内脏(腹腔网膜)脂肪,发现内脏脂肪细胞与皮下脂肪细胞表面的脂解激素(如肾上腺素)的受体位点数量、分布都有差异[69]:皮下脂肪细胞上的脂解激素(肾上腺素)受体β数量比α-2要少,而内脏脂肪细胞上的β受体跟α-2一样多。

1990年,Arner等人研究了32名非肥胖男女腹部和臀部脂肪细胞中β肾上腺素受体,发现腹部脂肪细胞上的β肾上腺素受体数量几乎是臀部脂肪细胞上的2倍,而且腹部脂肪细胞上的肾上腺素受体β1、β2、β3[70]十分活跃。这可在很大程度上解释内脏脂肪细胞对脂解激素的敏感反应和优先燃烧。

当然,既然有脂解,也就有抗脂解。顾名思义,抗脂解就是对抗脂肪分解,“把脂肪酸关在脂肪细胞里不让它跑出来被燃烧”。

Arner等人还报道说,抗脂解激素(如胰岛素)的受体,在皮下脂肪更活跃[70],但在内脏脂肪细胞中不活跃[71][72]。因此抗脂解激素很难把内脏脂肪制约在脂肪细胞中,结果内脏脂肪容易不受管控的逸出,在供能上优先级较高。

作为一个典型证据,Meek等人对26人注射胰岛素后,腿部皮下脂肪组织的脂肪酸释放几乎完全被制止,而内脏脂肪依然在释放脂肪酸(虽然减少了65%)[73]。

打个有趣的彼方,就像现在疫情来了要封闭清零:

脂肪酸像是居民,腿臀部和内脏就是不同的小区;脂解激素有点像快递员,他们要让小区居民出来拿快递;抗脂解激素就是负责封闭小区的居委会,不让小区居民出来;腿臀部小区居民比较听居委会的话,对外卖的诱惑视若无睹,老老实实待在家里;内脏小区居民不太听居委会话,对快递员很热情,总是跑到外面去拿快递。

五、内脏脂肪的供能优先级:地理位置优势

我们已经知道,在禁食/饥饿/运动/能量不足期间,肾脏/胰腺等器官分泌脂解激素作用于脂肪细胞,释放脂肪酸出来供身体使用。

但是释放的脂肪酸,并不是直接到了各种器官,而是先去肝脏。Michele等人报告[74]在禁食/能量不足状态下,脂肪细胞释放的脂肪酸(至少大部分)先到肝脏,再到肌肉和其他组织。脂肪细胞为什么会开始释放脂肪酸?我们刚刚解释过,脂解激素刺激。

把两张图拼起来就是这样:

粗略框架

这样,整个流程就大体上完整了。所以我们应该清楚,脂肪组织释放的脂肪酸,并不是直接去了肌肉/其他器官,而是先去了肝脏,在肝脏合成TG(甘油三酯),然后再送往肌肉/其他器官。

因为肝脏是能量代谢的中心[74][75]。

这和我们的主题(内脏脂肪供能的优先级)有什么关系?答案是,相比大腿而言,内脏脂肪离肝脏近,向肝脏供能便捷——门静脉[76][77][78]。

门静脉

虽然这种说法听起来有点像地摊文学,但确实在许多科学文献都有提及:『门静脉理论』[79][80]。即:因为网膜、肠系膜等内脏脂肪组织的血管直接连入门静脉,可以将大量的脂肪酸释放到门静脉中,门静脉的脂肪酸浓度可显著高于动脉脂肪酸浓度,使肝脏沐浴在高浓度的脂肪酸流中[81][82]。

Soren等人早在2004年就证明[83]:男性和女性受试者的内脏脂肪越多(越胖),肝脏得到的脂肪酸中,来自内脏脂肪的比例就越高。

男性和女性受试者从内脏脂肪组织脂解产生脂肪酸,向肝脏输送的百分比

Soren等人的研究是一个强有力的证据,证明了餐后内脏肥胖的人的肝脏暴露于更高浓度的游离脂肪酸。这也解释了为什么内脏脂肪在供能上,相对于大腿/皮下脂肪,具有更高的优先级。

总之,减肥一定是先减内脏脂肪、或者说内脏脂肪动用比例较大的。

References1. ^Okura T, Nakata Y, Tanaka K. Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obes Res 2003; 11: 1131–1139.

2. ^ Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.

3. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.

4. ^Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 2004; 12: 789–798.

5. ^Weinsier RL, Hunter GR, Gower BA, Schutz Y, Darnell BE, Zuckerman PA. Body fat distribution in white and black women: different patterns of intraabdominal and subcutaneous abdominal adipose tissue utilization with weight loss. Am J Clin Nutr 2001; 74: 631–636.

6. ^ Gower BA, Weinsier RL, Jordan JM, Hunter GR, Desmond R. Effects of weight loss on changes in insulin sensitivity and lipid concentrations in premenopausal African American and White women. Am J Clin Nutr 2002; 76: 923–927.

7. ^ Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 2000; 85: 2767–2774.

8. ^Alvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol Endocrinol Metab 2005; 289: E665–E669.

9. ^Rice B, Janssen I, Hudson R, Ross R. Effects of aerobic or resistance exercise and/or diet on glucose tolerance and plasma insulin levels in obese men. Diabetes Care 1999; 22: 684–691.

10. ^Weits T, van der Beek EJ, Wedel M, Hubben MW, Koppeschaar HP. Fat patterning during weight reduction: a multimode investigation. Neth J Med 1989; 35: 174–184.

11. ^Okura T, Tanaka K, Nakanishi T, Lee DJ, Nakata Y, Wee SW et al. Effects of obesity phenotype on coronary heart disease risk factors in response to weight loss. Obes Res 2002; 10: 757–766

12. ^Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes 1991; 15: 853–859.

13. ^Janssen I, Ross R. Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes Relat Metab Disord 1999; 23: 1035–1046.

14. ^Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002; 105: 564–569.

15. ^Thong FS, Hudson R, Ross R, Janssen I, Graham TE. Plasma leptin in moderately obese men: independent effects of weight loss and aerobic exercise. Am J Physiol Endocrinol Metab 2000; 279: E307–E313.

16. ^abTiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Hakkinen AM, Tamminen M et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 2003; 52: 701–707.

17. ^Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after dietinduced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000; 133: 92–103.

18. ^Gambineri A, Pagotto U, Tschop M, Vicennati V, Manicardi E, Carcello A et al. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J Endocrinol Invest 2003; 26: 629–634.

19. ^Park HS, Sim SJ, Park JY. Effect of weight reduction on metabolic syndrome in Korean obese patients. J Korean Med Sci 2004; 19: 202–208.

20. ^Nakamura M, Tanaka M, Kinukawa N, Abe S, Itoh K, Imai K et al. Association between basal serum and leptin levels and changes in abdominal fat distribution during weight loss. J Atheroscler Thromb 2000; 6: 28–32.

21. ^ Park HS, Lee K. Greater beneficial effects of visceral fat reduction compared with subcutaneous fat reduction on parameters of the metabolic syndrome: a study of weight reduction programmes in subjects with visceral and subcutaneous obesity. Diabet Med 2005; 22: 266–272.

22. ^Okura T, Nakata Y, Lee DJ, Ohkawara K, Tanaka K. Effects of aerobic exercise and obesity phenotype on abdominal fat reduction in response to weight loss. Int J Obes (London) 2005; 29: 1259–1266.

23. ^Pare A, Dumont M, Lemieux I, Brochu M, Almeras N, Lemieux S et al. Is the relationship between adipose tissue and waist girth altered by weight loss in obese men? Obes Res 2001; 9: 526–534.

24. ^Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 2004; 27: 33–40.

25. ^ Tiikkainen M, Bergholm R, Rissanen A, Aro A, Salminen I, Tamminen M et al. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am J Clin Nutr 2004; 79: 22–30.

26. ^Kim DM, Yoon SJ, Ahn CW, Cha BS, Lim SK, Kim KR et al. Sibutramine improves fat distribution and insulin resistance, and increases serum adiponectin levels in Korean obese nondiabetic premenopausal women. Diabetes Res Clin Pract 2004; 66 (Suppl 1): S139–S144.

27. ^abKamel EG, McNeill G, Van Wijk MC. Change in intra-abdominal adipose tissue volume during weight loss in obese men and women: correlation between magnetic resonance imaging and anthropometric measurements. Int J Obes Relat Metab Disord 2000; 24: 607–613.

28. ^Yip I, Go VL, Hershman JM, Wang HJ, Elashoff R, DeShields S et al. Insulin–leptin–visceral fat relation during weight loss. Pancreas 2001; 23: 197–203.

29. ^nnon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological reviews. 2004;84:277–359.

30. ^Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387:90–94.

31. ^Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. American journal of physiology Endocrinology and metabolism. 2012;302:E19–31.

32. ^Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2010b;34(Suppl 1):S36–42.

33. ^abTrujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr.Rev. 2006;27:762–778.

34. ^Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: mplication of depot differences in adipose tissue for obesity complications. Molecular aspects of medicine. 2013;34:1–11.

35. ^ Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.

36. ^Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.

37. ^Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.

38. ^Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70

39. ^Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.

40. ^Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.

41. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390

42. ^Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172

43. ^Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506

44. ^Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273

45. ^Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210

46. ^Despr6s JR Moorjani S, Fefland Met al. (1989) Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 9:203-210

47. ^Despr6s JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10: 497-511

48. ^ Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973

49. ^Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162

50. ^Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.

51. ^Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983;72:1150–62.

52. ^Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004;5:197–216.

53. ^Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390

54. ^Kvist H, Chowdury B, Gang~rd U, Tyl6n U, Sj6str0m L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351-1361

55. ^SjOstr6m L, Kvist H (1988) Regional body fat measurements with computed tomography-scan and evaluation of anthropometric predictions. Acta Med Scand [Suppl] 723:169-177

56. ^Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Despr6s JP (1993) Sex differences in the relation of visceral adipose tissue to total body fatness. Am J Clin Nutr 58:463-467

57. ^Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002

58. ^Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992

59. ^Nelson RH, Basu R, Johnson CM, Rizza RA, Miles JM. Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes. 2007;56:2878–2884.

60. ^Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J. Clin. Invest. 1991;88:609–613.

61. ^Guo ZK, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48:1586–1592.

62. ^Jensen MD. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Invest. 1995;96:2297–2303.

63. ^Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) kinetics to postabsorptive FFA flux in men and women. Metabolism. 1996;45:662–666.

64. ^Basu A, et al. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2001;280:E1000–E1006.

65. ^Meek S, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.

66. ^Birbrair A., Zhang T., Wang Z.M., Messi M.L., Enikolopov G.N., Mintz A., Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298–2314.

67. ^Lafontan M., Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 2009;48:275–297.

68. ^Jaworski K., Sarkadi-Nagy E., Duncan R.E., Ahmadian M., Sul H.S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G1–G4.

69. ^ Mi-Jeong Lee,Susan K. Fried.Depot-Specific Biology of Adipose Tissues: Links to Fat Distribution and Metabolic Risk.Book Editor(s):Todd Leff,James G. Granneman.

70. ^abP Arner 1.Differences in lipolysis between human subcutaneous and omental adipose tissues.Ann Med. 1995 Aug;27(4):435-8.

71. ^Leibel RL, Edens NK, Fried SK. Physiologic basis for the control of body fat distribution in humans. Annu.Rev.Nutr. 1989a;9:417–443.

72. ^Lonnqvist F, Thorne A, Large V, Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler.Thromb.Vasc.Biol. 1997;17:1472–1480.

73. ^Meek SE, Nair KS, Jensen MD. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14.

74. ^abMichele Alves-Bezerra and David E. Cohen.Triglyceride metabolism in the liver.Compr Physiol. Author manuscript; available in PMC 2019 Feb 15.

75. ^Vasconcellos R, Alvarenga EC, Parreira RC, Lima SS, and Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 28: 1773–1788, 2016.

76. ^Antonio Manenti 1, Gianrocco Manco 2, Alberto Farinetti 2, Luca Roncati 3.The intrahepatic branches of portal vein: a relevant surgical topic.Surgery. 2021 May;169(5):1265.

77. ^ Z C Edelson.Preduodenal portal vein.Am J Surg. 1974 May;127(5):599-600.

78. ^Connie Ju  , Xin Li , Sameer Gadani , Baljendra Kapoor , Sasan Partovi.Pfortaderthrombose: Diagnose und endovaskuläres Management.Portal Vein Thrombosis: Diagnosis and Endovascular Management.

79. ^Bjorntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes.

80. ^R N Bergman 1.Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein?.Diabetologia. 2000 Jul;43(7):946-52.

81. ^Michael D. Jensen.Role of Body Fat Distribution and the Metabolic Complications of Obesity.J Clin Endocrinol Metab. 2008 Nov; 93(11 Suppl 1): S57–S63.

82. ^J Svedberg, G Strömblad, A Wirth, U Smith, and P Björntorp.Fatty acids in the portal vein of the rat regulate hepatic insulin clearance.J Clin Invest. 1991 Dec; 88(6): 2054–2058.

83. ^Soren Nielsen,1 ZengKui Guo,1 C. Michael Johnson,2 Donald D. Hensrud,1 and Michael D. Jensen1.Splanchnic lipolysis in human obesity.J Clin Invest. 2004 Jun 1; 113(11): 1582–1588.

84. ^eters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.

85. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.

86. ^Peters S. J., Dyck D. J., Bonen A., Spriet L. L. Effects of epinephrine on lipid metabolism in resting skeletal muscle. The American Journal of Physiology. 1998;275(2 Part 1):E300–E309.

87. ^Dyck D. J., Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. The American Journal of Physiology. 1998;275(5 Part 1):E888–E896.

88. ^alanian J.L., Tunstall R.J., Watt M.J., Duong M., Perry C.G.R., Steinberg G.R., Kemp B.E., Heigenhauser G.J.F., Spriet L.L. Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:1094–1099.

89. ^Jocken J.W., Blaak E.E. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol. Behav. 2008;94:219–230.

90. ^Holm C., Osterlund T., Laurell H., Contreras J.A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu. Rev. Nutr. 2000;20:365–393.

91. ^Shen W.J., Patel S., Natu V., Kraemer F.B. Mutational analysis of structural features of rat hormone-sensitive lipase. Biochemistry. 1998;37:8973–8979.

92. ^Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–1386.

93. ^Villena J.A., Roy S., Sarkadi-Nagy E., Kim K.H., Sul H.S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: Ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem. 2004;279:47066–47075.

94. ^Roepstorff C., Vistisen B., Kiens B. Intramuscular triacylglycerol in energy metabolism during exercise in humans. Exerc. Sport Sci. Rev. 2005;33:182–188.

95. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409

96. ^Petridou A., Chatzinikolaou A., Avloniti A., Jamurtas A., Loules G., Papassotiriou I., Fatouros I., Mougios V. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J. Clin. Endocrinol.

97. ^Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW 2004. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279: 48968–48975

98. ^Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3–21

99. ^Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–1386

100. ^Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R 2012. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 287: 41446–41457

101. ^Vaughan M, Berger JE, Steinberg D 1964. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239: 401–409

102. ^Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R 2002. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277: 4806–4815

103. ^Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R 2006. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281: 40236–40241

104. ^Morley N, Kuksis A 1972. Positional specificity of lipoprotein lipase. J Biol Chem 247: 6389–6393

105. ^ogalska E, Cudrey C, Ferrato F, Verger R 1993. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5: 24–30

106. ^Bertrand T, Auge F, Houtmann J, Rak A, Vallee F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, et al. 2010. Structural basis for human monoglyceride lipase inhibition. J Mol Biol 396: 663–673

107. ^Ranallo R.F., Rhodes E.C. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.

108. ^Campbell J, Martucci AD, Green GR. Plasma albumin as an acceptor of free fatty acids. Biochem J. 1964;93:183–189.

109. ^Miller N.E. HDL metabolism and its role in lipid transport. Eur. Heart J. 1990;11:1–3.

110. ^Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006;21:259–268.

111. ^Gimeno RE, Ortegon AM, Patel S, et al. Characterization of a heart-specific fatty acid transport protein. J Biol Chem. 2003;278:16039–16044.

112. ^Schaap FG, Binas B, Danneberg H, van der Vusse GJ, Glatz JF. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999;85:329–337.

113. ^Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217–235.

114. ^Harasim E., Kalinowska A., Chabowski A., Stepek T. The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Higieny Medycyny Doswiadczalnej. 2008;62:433–441.

115. ^Bruce CR, Brolin C, Turner N, Cleasby ME, van der Leij FR, Cooney GJ, Kraegen EW. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. Am J Physiol Endocrinol Metab. 2007;292:E1231–1237.

116. ^Monaco C., Whitfield J., Jain S.S., Spriet L.L., Bonen A., Holloway G.P. Activation of AMPKα2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE. 2015;10:e0126122.

117. ^van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab. 2000;71:139–153.

118. ^Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25:495–520.

119. ^McGarry J.D., Brown N.F. The mitochondrial carnitine palmitoyltransferase system. Eur. J. Biochem. 1997;244:1–14.

120. ^Holloway G.P., Bezaire V., Heigenhauser G.J.F., Tandon N.N., Glatz J.F.C., Luiken J.J.F.P., Bonen A., Spriet L.L. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J. Physiol. 2006;571:201–210.

121. ^Houten S.M., Violante S., Ventura F.V., Wanders R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016;78:23–44.

西门子g130参数设置?

参数如下

电机额定值转距规范输出功率100 % = r2004r2004 = (p2003 x p2000 x π) / 30

规范工作频率100% = p2000 / 60

规范调配指数100 % = 没有调配的最高输出电压

规范磁通量100 % = 电机额定值磁通量

标准温度100 % = p2006p2006 = 100 ℃

推动目标 TM31

5G时代是京东方的希望吗?

京东方,扶不起的阿斗,5G时代不会是京东方的希望,时代和技术的变革对其没有任何影响,还是烂泥难上墙,仍旧是地方政府财政的一大吞金黑洞。

最新财报显示,京东方主营业务仍旧是:光电子与显示器件、显示信息终端设备;无线通讯与移动信息设备;系统解决方案、软件与服务等几个部分。

其中,端口器件、智慧物联和智慧医工是公司主要收入来源,分别占比92.47%、13.76%和1.21%。而端口物件主要指智能手机液晶显示屏、平板电脑显示屏、笔记本电脑 显示屏、显示器显示屏、电视显示屏,一句话就是生产销售显示屏,是一个资本密集型产业,且毛利率仅有15.56%,明显偏低。同时我们发现2019年营收增长了27%,但净利下降了43.92%,行业竞争激烈,产品价格下降超预期。

该行业产品更新换代快,但是投入极大,往往一条生产线刚刚建立,新一代产品就上市,公司不得不投入巨资进行下一轮投资。例如:斥资465亿元打造绵阳第六代OLED柔性显示工厂,按计划在2021年推出相关产品,但很可能到2021年,该产品跟不上技术的变革。京东方这些年一直就在玩这个游戏,所以每年地方政府巨资补贴,才没有退市。

再来看看过去8年的营收

2010年至2018年,每股收益分别是:-0.24、0.04、0.02、0.17、0.09、0.05、0.05、0.22、0.10。

其复合增长率=【(0.10/-0.24)^1/4-1】*100%,其计算结果为负值,显然这不是一家好公司。同时过去八年,业绩波动巨大,显然公司没有能力左右行业,产品不具有定价权。

最后看看股价走势

公司2001年1月上市,在过去的18年中,股价只有在2007年6开始,有近半年的靓丽表现,其余时间股价都一直在2元到4元的区间运行,带给投资者的只有伤害,没有惊喜。339亿流通股本,上千亿的市值,也限制了股价在二级市场上的表现。最近股价触及60天均线,破位下行概率较大,也许今年的上涨基本宣告完毕了。

总之,该股不管5G,甚至6G时代,其内在的气质决定了希望在遥远的田野上。

感谢关注!

80这三种性能非常接近的坦克?

(苏军的T64坦克)

T64坦克的坦克造价当时约为110万美元一辆,T72的造价比其低了数十万美元,造价

降低换来的是一些硬件上的降级,比方说T64的装弹机是电动液压转盘式装弹机,而T72的装弹机是单纯的电动装弹机,装弹速度上就比T64慢了一点,装甲防护上也薄弱了,虽然采用了125mm口径的滑膛炮,但到后期改型才能发射炮射导弹,T64本来就可以发射,不需要进行改进,而且T64采用了所谓K型复合装甲,等效为400mm以上,在当时确实很震撼。

(当时苏军大规模装备的T62,我国在珍宝岛战役中也缴获了一辆)

而为什么我要说实战上的考虑呢?因为T64的部分硬件当时太过超前,存在很多的技术故障,并且此时苏军不光需要这种新型坦克武装部队,大批本国和盟国的T54/55和T62

坦克需要更新,其余部队总不能都换成T64吧,那后勤和维修人员还不炸了锅了,此时,苏联的下塔克尔设计局,用新的125mm滑膛炮加上成熟的老坦克上的技术重新设计了一款低配“T64”,这就是T72坦克。额外插一句,当时仍然有一支部队没有把老坦克完全退役,就是苏联的远东军,到苏联解体的时候,还在装备T62。

(T72坦克)

至于T80,那就是苏联人看到西方开始研发三代坦克后,开始在T64的基础上改进加研发的,首先在动力上,和善于闷声发大财的我国人民不同,俄国人民直接就搞了个大新闻,把燃气轮机装上去了,功重比达到了27.1匹/吨,比美国人的M1不知道要高到哪里去了。

(T80上装备的GTD-1000T燃气轮机)

从这里开始,T80的发动机性能已经开始和T64与T72不一样了,增大马力的效果就是T80的机动能力比原先的苏联坦克不知道要高到哪里去了,随之带来的是燃气轮机的大耗油量和高造价,这也就导致现在T80的总产量截止2015年为止仅有五千多辆,而T64产量在一万五千辆以上,T72更是超过两万五千辆。由此我们可以感觉到,这三种坦克都是用来高低搭配的,T80和T64是在质量上的优势压过对方,而T72更贴近于“铁甲洪流”这种定位,用坦克海冲垮敌方步兵的防御,至于对付坦克嘛,那就是另外二位的活了。

如果丈夫杀死了正在强奸妻子的人?

丈夫把性侵自己妻子的人杀了会怎样判刑呢?你了解吗?其实正当防卫不光是保护自己的权益不受侵犯还可以保护其他人的权益不被威胁!下面我们来看一组案例!2013年时张有力和李美丽(化名)相识了,一来二去俩人就互相喜欢上了对方,没过多久俩人就恋爱结婚了。婚后,俩人的生活一直都非常平稳幸福,李美丽一直是一个贤妻良母的角色,每天及时把可口的饭菜做好,让张有力回家就能吃上热乎的饭。可是有一天张有力下班回家发现妻子并没有像往常一样给自己做好饭菜。正在这个时候他听到了房间里有呼救的声音,他忙着冲到房间,推开门他发现有一个光溜溜的男子正在性侵自己的妻子,李美丽流着泪,却根本无法挣脱。张有力看到这个情况气急败坏去厨房拿起刀就砍向了这个男子,该男子当场就死亡了。

该案子该怎么判罚呢?我们首先要了解正当防卫的含义。正当防卫是公民的权利,是经过法律允许的。目的就是要敢于对不法行为作抗争,正就是绝不给不正可乘之机,法就是绝不可能向不法低头。这就是鼓励我们公民要学会用法律的权利来保护自己、集体、国家的权益,绝不容忍不法行为的肆意妄为。

在这个案件中丈夫发现自己的妻子正在被别人性侵的时候,为了解救妻子对对方进行了攻击,致使对方死亡这属于正当防卫,不用承担法律责任!

该男子入室对李美丽进行强奸是犯罪的过程,他违背了李美丽的意愿,因此不管是当事人还是施救者都可以进行正当防卫。所以张有力不用承担责任。

其实2006年贵州也有一起相似的案例,只是当事人和妻子一起逃亡,最后一审被判处无期徒刑。在网上,网友几乎一边倒地对田仁信表示同情,质疑判决无期徒刑过重。也有网友呼吁应尊重审判的独立性和法官的自由裁量权。

“判决后,我问他要不要上诉,他最终没有选择上诉,案发后,他一直在逃,可能整个人精疲力竭了吧。”辩护律师分析认为,法院之所以判处田仁信无期,而没有判得更低,主要考虑到田仁信杀害张平时,张平已经停止对田仁信妻子侵犯,对田仁信妻子的威胁已经消失。另一方面,田仁信对张平的民事赔偿也没有到位。

看看,该案说对当事人的威胁已经消失,这太过牵强,明明还在进行中!我只能说当时法律还不够完善,对强奸犯的惩罚力度还不够。

好的,我们还是回归第一个案例。现在肯定有人会问如果杀人不用负责任的话那是不是谁都可以随便杀人了呢?反正又不会坐牢。当然这种想法是错误的!

我们还是要说如果犯罪过程已经结束了,那么就要保持冷静。因为对于已经结束的犯罪过程,因为不理智冲动将对方杀死那就是故意杀人了,还是要承担相应的法律责任的!你们明白吗?就比如下面这个案例,虽然当事人挺可怜,但还是很难被判正当防卫。

这是发生在安徽的一起案例!

35岁的毕志新获知妻子曾秀被同村的冀鹏强奸后,对该事一直没得到解决而不满。2015年2月5日23时许,毕志新携镰刀、菜刀前往冀鹏家复仇。在冀鹏家附近,毕志新与冀鹏相遇,两人发生厮打。毕志新持镰刀砍击冀鹏头、面、颈部及四肢数刀,后又持菜刀砍击冀鹏头、颈部数刀,致冀鹏死亡。经法医鉴定,冀鹏符合失血性休克死亡。

检察机关在法庭上出示了毕志新的供述、证人证言、现场勘查笔录、物证等10余组证据,并建议法庭以故意杀人罪追究毕志新的刑事责任。

那么就会有人问那什么条件才会被认为是正当防卫呢?就让我们来看看正当防卫的条件都是什么吧!

首先构成正当防卫需要有不正当的侵害发生时;第二要在不正当侵害发生的过程中;第三正当防卫不能越界;第四一定要保证是为了保护权益不受侵害;第五正当防卫针对的必须是侵害者。

关于正当防卫,我们国家也在不断完善,未来法律只会更加健全,更能保护受害者!最后我们一起再来看个案例!

2018年9月的这一天,让一位刚打完农药的农村妇女无论如何也没有想到,接下来的这一幕,竟然成为她这辈子都不愿回忆起的过往。在荒郊野外、四处无人的情况下,农妇“叫天天不应、叫地地不灵”,面对凭借酒劲男子实施强奸的行为,她靠着农药箱上的一根软管勒住对方颈部,与其几番对峙周旋。最后她抓紧这根“救命稻草”将男子勒倒在田埂。次日早晨,她在村干部陪同下前往现场,发现对方已经死亡便立即报警、自首。后经检察机关审查认定,该农妇对正在实施强奸的男子所采取的行为属于正当防卫,作出不起诉处理,终让正义得到彰显。

该案于2020年11月被最高人民检察院评为“正当防卫不捕不诉典型案例”,案例发布当日就冲上了微博热搜第一名,得到人们的广泛好评。

周某某正当防卫案能够取得比较好的效果,既是法治进步的结果,也有利于法治更进一步发展。近年来人民群众对于公平、正义、安全感的呼声越来越高,对“法不能向不法让步”这个理念的认同和正当防卫行为的支持力度也越来越大,这给我们依法办案带来了很大的鼓舞和信心;另外通过本案的普法宣传,也让更多人了解了正当防卫制度,让正义“挺直了腰杆”。

结语:所谓杀父之仇,夺妻之恨,这是不共戴天之仇。请正确地实施正当防卫!惩罚坏人的时候,保护好自己!如果已经不符合正当防卫,请拿起法律武器去制裁他,让他得到应有的惩罚!不要因一时冲动毁了一切,当然是个男人都受不了这个,但妻子无罪,让犯罪份子伏法后,请加倍呵护她!比起冲动杀人报仇,这个更能证明你很爱她!当然,我还是希望强奸罪要判重一些!三年到十年太过不痛不痒了!判重一些,让欲犯罪者自己好好掂量掂量,这样或许能够避免更多的不幸!

好了,我是轩辕问答君,今天就和大家聊到这里,关于这个话题你怎么看,欢迎评论区留言哦!

免责声明:由于无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如我们转载的作品侵犯了您的权利,请在一个月内通知我们,请将本侵权页面网址发送邮件到qingge@88.com,我们会做删除处理。

发表评论

快捷回复: 表情:
评论列表 (暂无评论,124人围观)

还没有评论,来说两句吧...